Description of age, sex, and characteristics of Hepatitis C patients in the SVR10K study: A real-world SOF/VEL analysis performed across five global regions

Soo Aleman¹, Fatima Higuera-de-la-Tijera², Francisco Javier Garcia-Samaniego³, Marta Martinez⁸, Artak Khachatryan⁷, Linda Chen⁹, Candido Hernández¹⁰, Kim Vanstraelen¹¹, Ming-Lung Yu¹²

1.Karolinska University Hospital, Stockholm, Sweden, 2.Hospital General de México "Dr. Eduardo Liceaga", Mexico DF, Mexico, 3.Hospital Universitario La Paz, Madrid, Spain, 4.Hospital General de México "Dr. Eduardo Liceaga", Mexico DF, Mexico, 3.Hospital Jeneral de Torrecárdenas, 8.Certara Inc, Princeton, United States, 8.Certara Inc, Princeton, United States, 8.Certara Inc, Madrid, Spain, 9.Gilead Sciences, Foster City, United States, 10.Gilead Sciences, Madrid, Spain, 11. Gilead Sciences, Brussels, Belgium, 12. National Sun Yat-sen University, Kaohsiung, Taiwan

Conclusions

- In 6,095 patients with SVR outcomes (effectiveness population), SVR was greater than 98%, without differences for sex or age groups over and under 50 years.
- Although in the overall cohort (6,633 patients) there were more male than females (66% vs 34%), in patients over 50 years the difference tended to be diluted (63% vs 37%).
- In both sexes, GT3 was more prevalent in patients over 50 years. Males more often had GT3 than females (77% vs 23%).
- No difference by sex was observed for patients with compensated cirrhosis (male 20% vs female 22%).
- Time to treatment initiation \leq 30 days with the HCV therapy was more likely in females compared to males; for both aged over 50 years (25% vs 15%) and under 50 years (17% vs 11%).

Plain Language Summary

 The SVR10K study confirms the high effectiveness of using SOF/VEL without RBV in diverse populations globally, with realworld SVR higher than 98% across diverse age, sex and geographic groups. Results in these new geographies did not differ from previous real-world studies of patients in Western countries, reinforcing the efficacy of pangenotypic/ panfibrotic/ pangeographic DAA therapy such as SOF/VEL and supporting the global applicability of HCV treatment guidelines.

EASL Session: Poster - Viral hepatitis C: Therapy and resistance

References: 1. Mangia A et al. Liver Int 2020;40:1841-52; 2. Mangia A et al. EASL 2022; Poster FRI384

Acknowledgments: We extend our thanks to the patients, their families, and all participating investigators. This study was funded by Gilead Sciences, Inc. Study implementation, data analysis, editing and production assistance were provided by CERTARA, and funded by Gilead Sciences, Inc.

Disclosures: LC, CH are employees and shareholders of Gilead Sciences, Inc. AC, MM, AK are employees of Certara and Certara is a paid consultant to Gilead Sciences, Inc. MLY, reports grants from: AbbVie, Gilead, Merck and Roche diagnostics; consulting fee from: AbbVie, BMS, Gilead, Roche and Roche diagnostics; speaking and support fees from: AbbVie, BMS, Eisai, Gilead, Roche and Roche diagnostics. GW, reports grants and support fee from: Gilead Science; consulting fee from: AZ, Gilead Sciences, Janssen and GSK; speaking fee from: Abbott, AbbVie, Ascletis, BMS, Echosens, Gilead Science, Janssen, Roche. MFH, reports speaking fee from: Grünenthal Mexico, Schwabe Pharma México; support fee from: Grupo Medifarma S.A. de C.V. MA, reports speaking and support fees from: Gilead Sciences. JGS, reports grants fee from: Gilead Science; consultant and speaker fees from: AbbVie and Gilead Sciences. MC, reports consultant and speaker fees from: Gilead, Advanz Pharma, Roche; Grants from: Gilead Sciences. SA, reports participation in Gilead Science advisory board HDV, no fee reported. HKK, reports grants from: Gilead Science (Nordic). KL, reports no conflicts.

Correspondence: marta.martinez@certara.com

Introduction

 A previous real-world data (RWD) analysis demonstrated high effectiveness of sofosbuvir/velpatasvir (SOF/VEL) without ribavirin (RBV) in more than 6,000 HCV patients from different clinical cohorts across Australia, Canada, Europe & USA^{1,2} (Figure 1).

Figure 1. Previously published RWD analysis in Western countries and Australia

- In that former analysis, irrespective of age, male patients were more likely to have advanced fibrosis and infection with HCV GT 3, and median time to treatment initiation was numerically shorter in male patients across the age spectrum².
- The aim of this large real-world analysis was to evaluate differences in outcomes by sex and age characteristics among a pool of of HCV patients treated with SOF/VEL without RBV in an extended geographical initiative across multiple diverse populations in Western countries, Asia, Middle Eastern and Latin-American regions (the ongoing SVR10K study).

Methods

- This (ongoing) analysis included patients ≥ 18 years treated with SOF/VEL without ribavirin (RBV) for 12 weeks from 10 sites across Brazil, Hong Kong, Mexico, Singapore, Sweden, Spain, Taiwan, and the United Arab Emirates (Figure 2).
- Baseline characteristics included age (in categories </≥50 yo), sex, being treatment experienced (TE), presence of cirrhosis (F4, not decompensated), genotype, coinfections (HBV, HDV, HIV), time to treatment initiation (TTI) from HCV diagnosis were described, along with sustained virologic response rates (SVR) at 4, 12, and 24 weeks)

Results

- Among 6,633 patients, 66% (4,348) were males and 34% (2,267) were females, with 71% females vs 62% males being \geq 50 yo (p<0.001) (Table 1).
- p<0.001). No differences were observed in terms of Treatment Experienced (4.7% male vs 3.7% in female, NS), irrespective of being over or under 50 yo (Table 1).
- groups, over and under ≥50 yo. No differences by sex was observed for patients with compensated cirrhosis (22.0% male vs 20.0% female, NS) (Table 1).
- yo (17.0% in females vs 10.9% in males, p<0.001) (Table 2).
- statistically significant differences for aged over or under 50 yo (Table 3).

• Coinfections were numerically more prevalent in males (HIV 5.3% vs 2.3%, NS; HBV 3.6% vs 3.0%, NS), with statistically significant difference for HDV (0.2% vs 0.1%, • In both sexes, GT3 was more prevalent in over 50 yo. Male patients more often had GT3 vs females (36.4% vs 20.9%, p<0.001); these differences were seen in both age • Time to treatment initiation with the HCV therapy was shorter in females; for aged over 50 yo (25.3% in females vs 14.6% in males, p<0.001) as well as for aged under 50

• In 6,095 patients with SVR outcomes (effectiveness population), both sex and age groups had SVR greater than 98% (99.0% in females vs 98.7% in males), without

Results (Tables)

Table 1. Demographics for female and male patients in the overall population

		Female	Male	p value
		n=2,267	n=4,348	
Age	Mean [SD]	58.0 [14.8]	53.0 [12.8]	<.0001
	Median	59.3	53.7	~ 0001
	[IQR]	[47.7; 68.5]	[44.8; 61.3]	<.0001
Age group, n (%)	<50 years	659 (29.1%)	1,648 (37.9%)	<.0001
	≥50 years	1,608 (70.9%)	2,699 (62.1%)	
Coinfections, n (%)	HBV	65 (3.0%)	150 (3.6%)	0.1869
	HDV	1 (0.1%)	5 (0.2%)	<.0001
	HIV	50 (2.3%)	218 (5.3%)	0.2468
TE, n (%)	Overall	82 (3.7%)	196 (4.7%)	0.0724
	TE in age <50 y	21 (3.3%)	60 (3.8%)	0.5473
	TE in age ≥50 y	61 (3.9%)	136 (5.3%)	0.0521
Genotype 3*, n (%)	Overall	473 (20.9%)	1,584 (36.4%)	<.0001
	GT3 in age <50 y	272 (41.3%)	787 (47.8%)	0.0048
	GT3 in age ≥50 y	201 (12.5%)	796 (29.5%)	<.0001
Fibrosis stage F4, n (%)	Overall	206 (20.0%)	620 (22.0%)	0.1851
	F4 in age <50 y	69 (14.2%)	205 (16.3%)	0.276
	F4 in age ≥50 y	137 (25.3%)	415 (26.6%)	0.5356

n: # of patients; SD: Standard Deviation; IQR: Interquartile Range; TE: Treatment Experienced; HBV: Hepatitis B; HDV: Hepatitis D; HIV: Human Immunodeficiency Virus; * All genotype 3 subtypes are included; F4: Fibrosis stage 4; y: years

Table 2. Time to Treatment Initiation (TT)

		Female n=2,658	Male n=4,107	p value		
Time to Treatment (TT)**, n (%)	<1 day	230 (10.8%)	257 (6.3%)			
	1-7 days	104 (4.9%)	101 (2.5%)			
	8-30 days	185 (8.6%)	215 (5.2%)			
	31-90 days	159 (7.4%)	258 (6.3%)	<.0001		
	91-180 days	136 (6.4%)	238 (5.8%)			
	>180 days	750 (35.1%)	1,767 (43.0%)			
	Missing	575 (26.9%)	1,271 (30.9%)			
TT ≤ 30 days**, n (%)	In age <50 y	112 (17.0%)	179 (10.9%)	<.0001		
	In age ≥50 y	407 (25.3%)	394 (14.6%)	<.0001		
n, # of potienter very ** Missing volues used for percentage coloulation						

n: # of patients; y: years; ^^Missing values used for percentage calculation

Table 3. SVR in the effectiveness population

		Female n=2,066	Male n=4,029	p value
SVR (mITT)***, n (%)	SVR overall	2,045 (99.0%)	3,978 (98.7%)	0.3937
	SVR in <50 y	594 (98.0%)	1,496 (98.2%)	0.7475
	SVR in ≥50 y	1,451 (99.4%)	2,481 (99.0%)	0.2534
	_			

n: # of patients; SVR: Sustained Virological response; y: years; ***Within effectiveness population only